

Vorlesung: Statistik II für Wirtschaftswissenschaft

Prof. Dr. Helmut Küchenhoff

Institut für Statistik, LMU München

Sommersemester 2017

Institut für Statistik

- Einführung
- 1 Wahrscheinlichkeit: Definition und Interpretation
- 2 Elementare Wahrscheinlichkeitsrechnung

Axiome nach Kolmogorov

Gegeben sei ein Zufallsexperiment mit Ergebnisraum Ω (Menge der möglichen Ergebnisse)

Axiom 1

Jedem Ereignis A , $A \subset \Omega$ ist eine Wahrscheinlichkeit P(A) zugeordnet, die Werte zwischen 0 und 1 annehmen kann:

$$0 \le P(A) \le 1$$
.

Axiom 2

Das sichere Ereignis hat die Wahrscheinlichkeit 1:

$$P(\Omega) = 1$$
.

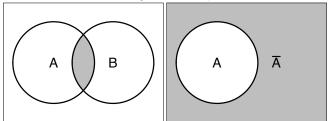
Axiom 3

Sind A₁ und A₂ disjunkte Ereignisse, so ist

$$P(A_1 \cup A_2) = P(A_1) + P(A_2).$$

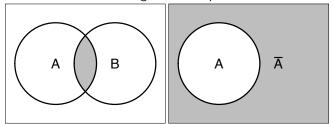
Venn Diagramme

Veranschaulichung von Wahrscheinlichkeiten durch Flächen : Schnittmenge und Komplement:

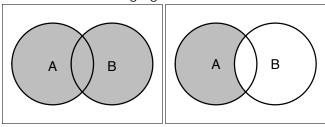


Venn Diagramme

Veranschaulichung von Wahrscheinlichkeiten durch Flächen : Schnittmenge und Komplement:



Vereinigung und Differenz



Folgerung 1

Die Wahrscheinlichkeit für das zu A komplementäre Ereignis \bar{A} ist

$$P(\bar{A})=1-P(A)$$

Beweis

Axiom 2:
$$P(\Omega) = 1$$

 $\Leftrightarrow P(A \cup \bar{A}) = 1$
 $\stackrel{\text{Axiom 3}}{\Leftrightarrow} P(A) + P(\bar{A}) = 1$
 $\Leftrightarrow P(\bar{A}) = 1 - P(A)$

Folgerung 2

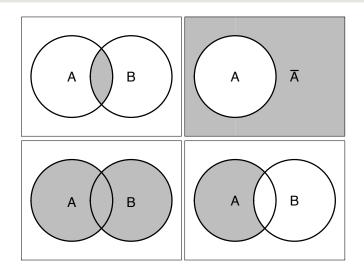
Die Wahrscheinlichkeit des unmöglichen Ereignisses ∅ ist

$$P(\emptyset) = 0$$

Beweis

$$P(\emptyset) = P(\bar{\Omega}) \stackrel{\mathsf{Folgerung 1}}{=} 1 - P(\Omega) \stackrel{\mathsf{Axiom 2}}{=} 0$$

Venn Diagramme



Folgerung 3

Die Wahrscheinlichkeit, dass von zwei Ereignissen A_1 und A_2 , die sich nicht notwendig gegenseitig ausschließen, mindestens eins eintritt, ist

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

Beweis

$$P(A_1 \cup A_2) \stackrel{\text{disjunkte}}{=} P(A_1 \backslash A_2 \cup A_2 \backslash A_1 \cup (A_1 \cap A_2))$$

$$\stackrel{\text{Axiom 3}}{=} P(A_1 \backslash A_2) + P(A_2 \backslash A_1) + P(A_1 \cap A_2)$$

$$\stackrel{\text{kreative 0}}{=} \underbrace{P(A_1 \backslash A_2) + P(A_1 \cap A_2)}_{P(A_1)} + \underbrace{P(A_2 \backslash A_1) + P(A_1 \cap A_2)}_{P(A_2)}$$

$$= P(A_1 \cap A_2)$$

$$= P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

Folgerung 4

Für $A \subseteq B$ gilt stets

$$P(A) \leq P(B)$$

Beweis

$$B \stackrel{\text{disjunkte}}{=} A \cup (\bar{A} \cap B)$$

$$\Rightarrow P(B) = P(A \cup (\bar{A} \cap B))$$

$$\stackrel{\text{Axiom 3}}{\Leftrightarrow} P(B) = P(A) + \underbrace{P(\bar{A} \cap B)}_{\geq 0 \text{ (Axiom 1)}}$$

$$\Rightarrow P(B) \geq P(A)$$

Folgerung 5

Sei $A_1,...,A_n$ eine vollständige Zerlegung des Ereignisraums Ω in paarweise disjunkte Ereignisse. Für ein beliebiges Ereignis B gilt dann

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i)$$

10 / 41

Zusammenfassung

Rechenregeln für Wahrscheinlichkeiten

- $0 \le P(A) \le 1$
- $P(\Omega) = 1$
- $P(\emptyset) = 0$
- $P(\bar{A}) = 1 P(A)$
- $P(A_1 \cup A_2) = P(A_1) + P(A_2) P(A_1 \cap A_2)$
- $P(A_1 \cup A_2) = P(A_1) + P(A_2)$, falls A_1 und A_2 disjunkt sind
- $P(B) = \sum_{i=1}^{n} P(B \cap A_i)$, falls A_i eine vollständige Zerlegung von Ω bilden

Laplacesche Wahrscheinlichkeit

Definition Laplacesche Wahrscheinlichkeit

Liegt ein Zufallsexperiment zugrunde, bei dem

- die Ergebnismenge endlich ist und
- alle Ergebnisse gleichwahrscheinlich sind,

dann bildet der Quotient aus

$$\frac{\text{Anzahl der für } A \text{ günstigen F\"{a}lle}}{\text{Anzahl aller m\"{o}glichen F\"{a}lle}} = \frac{|A|}{|\Omega|} = P(A)$$

die Laplace-Wahrscheinlichkeit.

Die Mächtigkeiten |A| und $|\Omega|$ können z.B. mit Hilfe von kombinatorischen Regeln bestimmt werden.

12 / 41

Ziehen aus einer Grundgesamtheit

Beispiel: Es wird ein Studierender der Vorlesung gezogen und nach seiner Wahlabsicht gefragt.

Dazu nehmen wir an, dass es N Studierende in der Vorlesung gibt und dass sie durchnummeriert sind n=1,...,N

P(Student Nr n wird gezogen) = 1/N

Alle haben die gleiche Ziehungswahrscheinlichkeit.

• Wie groß ist die Wahrscheinlichkeit, dass er/sie ein SPD Wähler ist?

Ziehen aus einer Grundgesamtheit

Beispiel: Es wird ein Studierender der Vorlesung gezogen und nach seiner Wahlabsicht gefragt.

Dazu nehmen wir an, dass es N Studierende in der Vorlesung gibt und dass sie durchnummeriert sind n=1,...,N

P(Student Nr n wird gezogen) = 1/N

Alle haben die gleiche Ziehungswahrscheinlichkeit.

- Wie groß ist die Wahrscheinlichkeit, dass er/sie ein SPD Wähler ist?
- Wie groß ist die Wahrscheinlichkeit, dass eine Frau gezogen wird?

Lösung nach Laplace

Wahrscheinlichkeit für "SPD-Wähler"

$$P(SPD)$$
 = $\frac{\text{Anzahl der für } SPD \text{ günstigen Ergebnisse}}{\text{Anzahl aller möglichen Ergebnisse}}$ = $\frac{\text{Anzahl der SPD Wähler}}{\text{Anzahl aller Studierenden der Vorlesung}}$

Lösung nach Laplace

Wahrscheinlichkeit für "SPD-Wähler"

$$P(SPD)$$
 = $\frac{\text{Anzahl der für } SPD \text{ günstigen Ergebnisse}}{\text{Anzahl aller möglichen Ergebnisse}}$ = $\frac{\text{Anzahl der SPD Wähler}}{\text{Anzahl aller Studierenden der Vorlesung}}$

Die Wahrscheinlichkeit ist also die relative Häufigkeit f_{SPD} der SPD Wähler in der Grundgesamtheit.

Wahrscheinlichkeit für Frau ?

Relative Häufigkeiten und Wahrscheinlichkeiten

Die Argumentation des Beispiels gilt ganz allgemein.

 $P(\text{Eine Person mit der Eigenschaft E wird gezogen}) = f_E$

- Die relativen Häufigkeiten/Anteile aus der Grundgesamtheit pflanzen sich also in der entsprechenden Wahrscheinlichkeitsverteilung in der Stichprobe fort.
- Dies ist ganz entscheidend, denn dadurch kann man also durch eine Stichprobe etwas über die Häufigkeitsverhältnisse in der Grundgesamtheit lernen.

Zufallsstichproben

- Ziehung von mehreren n Einheiten aus der Grundgesamtheit
- Ziehung mit und ohne Zurücklegen
- Typischerweise sind Stichproben ohne Zurücklegen praktisch einfacher zu realisieren und zu rechtfertigen.
- Für sehr große Grundgesamtheiten sind die Unterschiede zwischen mit und ohne Zurücklegen verschwindend gering.

Die praktische Umsetzung:

- Mit Hilfe einer nummerierten Liste der Grundgesamtheit Hilfe von Computerprogrammen
- Ersatzmechanismen: Random dialing (Telefon), Random Walks etc.
- Nicht aufs gerate Wohl. (Ich spreche Leute an)

Ziehen mit Zurücklegen

- Grundgesamtheit mit N Zahlen $G = \{1, ..., N\}$.
- Ziehe Stichprobe vom Umfang n mit Zurücklegen.
- Zur Beschreibung des Zufallsvorgangs müssen wir die Anzahl der potentiell möglichen Stichprobenergebnisse bestimmen (jede Stichprobe ist gleichwahrscheinlich).
- $\Omega = \{(\omega_1, \dots, \omega_n) | \omega_j \in \{1, \dots, N\}\}$, das selbe Element kann mehrfach vorkommen.
- $|\Omega| = \underbrace{N \cdot N \cdot \ldots \cdot N}_{n-\text{mal}} = N^n$, d.h. N^n potentiell mögliche Stichproben vom Umfang n.

Beispiel: Stichprobentheorie

Ziehe Stichprobe vom Umfang n aus Grundgesamtheit von N=1000 mit Zurücklegen. Annahme: In Grundgesamtheit sind 300 SPD Wähler

$$n = 1 P(1SPD) = 0.3$$

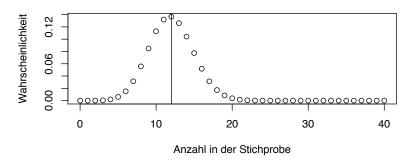
$$n = 2 P(0SPD) = \frac{700 \cdot 700}{1000 \cdot 1000} = 0.49$$

$$P(1SPD) = \frac{300 \cdot 700}{1000 \cdot 1000} \cdot 2 = 0.42$$

$$P(2SPD) = \frac{300 \cdot 300}{1000 \cdot 1000} = 0.09$$

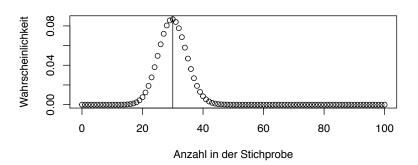
Beispiel: n=40

Ziehe Stichprobe vom Umfang n aus Grundgesamtheit von N=1000 mit Zurücklegen. Annahme: In Grundgesamtheit sind 300 SPD Wähler Berechnung für große n mit Hilfe der Binomialverteilung



Beispiel: n=100

Ziehe Stichprobe vom Umfang n aus Grundgesamtheit von N=1000 mit Zurücklegen. Annahme: In Grundgesamtheit sind 300 SPD Wähler Berechnung für große n mit Hilfe der Binomialverteilung



Einfache Zufallsstichprobe

Ziehen ohne Zurücklegen ohne Berücksichtigung der Reihenfolge

- Ziehe n Kugeln aus einer Urne mit N nummerierten Kugeln. Die Reihenfolge der Ziehungen spielt keine Rolle, d.h. die Stichprobe "4,1,7" wird nicht unterschieden von "7,1,4".
- $\Omega = \{\{\omega_1, \dots, \omega_n\} : \omega_j \in \{1, \dots, N\}, \omega_j \neq \omega_i \text{ für } j \neq i\}$
- Anzahl der Stichproben:

$$|\Omega| = \frac{N!}{(N-n)!n!} = \binom{N}{n}$$

Bedingte Wahrscheinlichkeit I

"Herzoperation in Krankenhaus"

Überleben der Operation

Alle Fälle	Operation	Operation	P(nicht ü)
	überlebt	nicht überlebt	"Risiko"
Krankenhaus U	500	500	0.5
Krankenhaus K	900	100	0.1

Frage: "In welchem Krankenhaus würden Sie sich behandeln lassen?"

Bedingte Wahrscheinlichkeit II

Schwere der behandelten Fälle

	schwere	leichte
	Fälle	Fälle
Krankenhaus U	900	100
Krankenhaus K	100	900

Frage: "Bleiben Sie bei Ihrer Entscheidung?"

Bedingte Wahrscheinlichkeit III

Überleben der Operation aufgeteilt nach der Schwere der behandelten Fälle

Schwere Fälle	Operation	Operation	P(nicht ü)
	überlebt	nicht überlebt	"Risiko"
Krankenhaus U	400	500	0.56
Krankenhaus K	30	70	0.7

Leichte Fälle	Operation überlebt	Operation nicht überlebt	P(nicht ü) "Risiko"
Krankenhaus U	100	0	0
Krankenhaus K	870	30	0.033

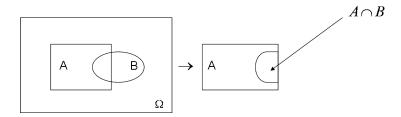
Definition der bedingten Wahrscheinlichkeit

In dem Beispiel betrachten wir das Risiko gegeben "schwerer Fall". Das Risiko wird berechnet durch

Allgemein definieren wir die Wahrscheinlichkeit von "Ereignis B gegeben A"

$$P(B|A) := \frac{P(A \cap B)}{P(A)}$$

Einschränkung des Ergebnisraumes und bedingte Wahrscheinlichkeit



Bedingte Wahrscheinlichkeit: Beispiel

B: Nicht überleben

A: Schwerer Fall

Krankenhaus U

P(B) = 500/1000 = 0.5 P(A) = 900/1000 = 0.9 $P(A \cap B)$ = 500/1000 = 0.5 P(B|A) = 0.5/0.9 = 0.56

Krankenhaus K

$$P(B)$$
 = $100/1000 = 0.1$
 $P(A)$ = $100/1000 = 0.1$
 $P(A \cap B)$ = $70/1000 = 0.07$
 $P(B|A)$ = $0.07/0.1 = 0.7 = 70\%$

Schwere	OP	OP	P(nicht ü)
Fälle	überlebt	nicht überl	"Risiko"
Krankenh U	400	500	0.56
Krankenh K	30	70	

Leichte Fälle	OP überlebt	OP nicht überl.	P(nicht ü) "Risiko"
Krankenh U	100	0	0
Krankenh K	870	30	0.033

Beispiel: Würfeln

$$\Omega$$
 = {1,2,3,4,5,6}
 A = {2,4,6} "gerade"
 B = {4,5,6} "groß"
 $A \cap B$ = {4,6}
 $P(A)$ = 3/6
 $P(A \cap B)$ = 2/6
 $P(B|A)$ = $P(A \cap B)/P(A) = (2/6)/(3/6) = 2/3$

Interpretation:

Wenn bekannt ist, dass die gewürfelte Zahl gerade ist, steigt die Wahrscheinlichkeit für "groß" auf 2/3.

Multiplikationssatz

Satz

Für zwei beliebige Ereignisse A und B gilt:

$$P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A).$$

Beweis

Nach Definition gilt:

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \Leftrightarrow P(B|A) \cdot P(A) = P(A \cap B)$$

$$P(A|B) = P(A \cap B) \Leftrightarrow P(A|B) \cdot P(A) = P(A \cap B)$$

und
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \Leftrightarrow P(A|B) \cdot P(B) = P(A \cap B)$$

zusammen ergibt sich

$$P(B|A) \cdot P(A) = P(A \cap B) = P(A|B) \cdot P(B)$$

Fußball Beispiel

Wie groß ist die Wahrscheinlichkeit, das Halbfinale zu gewinnen ? **Gesucht:** P(B) mit B = "Sieg im Halbfinale" Siegchancen sind abhängig vom jeweiligen Gegner! \Longrightarrow bedingte Wahrscheinlichkeiten.

$$A_1$$
 Gegner ist Mannschaft 1
 A_2 " 2
 A_3 " 3

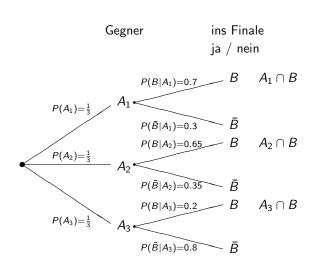
Bedingte Wahrscheinlichkeiten leicht(er) anzugeben:

$$P(B|A_1) = 0.7$$

 $P(B|A_2) = 0.65$
 $P(B|A_3) = 0.2$

Gegner wird ausgelost \Longrightarrow Annahme: $P(A_1) = P(A_2) = P(A_3) = \frac{1}{3}$

Wahrscheinlichkeitsbaum (Fußball Beispiel)



Fußball Beispiel(2)

Welche "Wege" im Wahrscheinlichkeitsbaum führen zu *B*? Nutze Multiplikationssatz

$$\begin{array}{lcl} P(A_1 \cap B) & = & P(A_1) \cdot P(B|A_1) = \frac{1}{3} \cdot 0.7 \\ P(A_2 \cap B) & = & P(A_2) \cdot P(B|A_2) = \frac{1}{3} \cdot 0.65 \\ P(A_3 \cap B) & = & P(A_3) \cdot P(B|A_3) = \frac{1}{3} \cdot 0.2 \end{array} \right\} \ \ \text{insgesamt: 0.52}$$

Verallgemeinerung: Vollständige Zerlegung

- A_1, A_2, A_3 bilden eine vollständige Zerlegung.
- $(A_1 \cap B)$, $(A_2 \cap B)$ und $(A_3 \cap B)$ sind disjunkt und ergeben in der Vereinigung B

Damit ergibt sich

$$P(B) = P((A_1 \cap B) \cup (A_2 \cap B) \cup (A_3 \cap B))$$

$$= P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$$

$$= P(B|A_1) \cdot P(A_1) + P(B|A_2) \cdot P(A_2) + P(B|A_3) \cdot P(A_3) = 0.52$$

Entlang der Äste multiplizieren, dann summieren

Satz von der totalen Wahrscheinlichkeit

Satz

Bilden die Ereignisse $A_1, ..., A_n$ eine *vollständige* Zerlegung von $\Omega = \bigcup_{i=1}^n A_i$ in paarweise disjunkte Ereignisse, so gilt für ein beliebiges Ereignis B:

$$P(B) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i).$$

34 / 41

Satz von Bayes

Satz

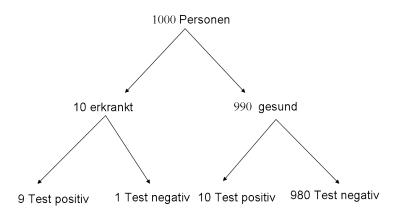
Für beliebige Ereignisse A und B mit P(A), P(B) > 0 gilt:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}.$$

Bilden die A_i eine vollständige Zerlegung von Ω und ist B irgendein Ereignis, so gilt unter Zuhilfenahme des Satzes von der totalen Wahrscheinlichkeit:

$$P(A_j|B) = \frac{P(B|A_j) \cdot P(A_j)}{\sum_{i=1}^n P(B|A_i) \cdot P(A_i)}.$$

Medizinische Tests



Medizinische Tests 2

K: KrankG: GesundTP: test positiv

TN: Test negativ

Gegeben:

$$P(K) = 10/1000 = 0.01$$

 $P(TP|K) = 9/10 = 0.9$
 $P(TP|G) = 10/990 = 0.0101$

$$P(K|TP) = ???$$

Lösung mit Satz von Bayes

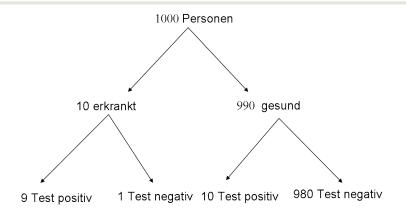
$$P(K|TP) = \frac{P(K \cap TP)}{P(TP)}$$

$$= \frac{P(TP|K) \cdot P(K)}{P(TP|K) \cdot P(K) + P(TP|G) \cdot P(G)}$$

$$= \frac{0.9 \cdot 0.01}{0.9 \cdot 0.01 + 0.0101 \cdot 0.99} = 0.474$$

38 / 41

Lösung mit Population



Beachte: Die Bedingung entspricht der Bezugspopulation 9 von 19 Patienten mit positivem Test sind tatsächlich krank:

$$P(K|TP) = 9/19 = 0.474$$

Unabhängigkeit

Definition stochastisch unabhängig

Zwei zufällige Ereignisse A und B heißen genau dann voneinander stochastisch unabhängig, wenn

$$P(A \cap B) = P(A) \cdot P(B)$$

gilt, d.h., wenn die Wahrscheinlichkeit für das gleichzeitige Eintreten von A und B gleich dem Produkt der beiden Einzelwahrscheinlichkeiten ist.

 Sind zwei Ereignisse A und B unabhängig so folgt, dass das Eintreten des Ereignisses B keinen Einfluss auf das Eintreten von A hat, d.h. es gilt:

$$P(A|B) = P(A|\bar{B}) = P(A)$$

 Man kann unter der der Annahme der Unabhängigkeit Wahrscheinlichkeiten berechnen:

A: Beim ersten Wurf 6

B: Beim zweiten Wurf 6

$$P(A \cap B) = P(A)P(B) = 1/36$$